Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 11(10): 3228-3238, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137537

RESUMO

In vivo biosensors that can convert metabolite concentrations into measurable output signals are valuable tools for high-throughput screening and dynamic pathway control in the field of metabolic engineering. Here, we present a novel biosensor in Saccharomyces cerevisiae that is responsive to p-coumaroyl-CoA, a central precursor of many flavonoids. The sensor is based on the transcriptional repressor CouR from Rhodopseudomonas palustris and was applied in combination with a previously developed malonyl-CoA biosensor for dual regulation of p-coumaroyl-CoA synthesis within the naringenin production pathway. Using this approach, we obtained a naringenin titer of 47.3 mg/L upon external precursor feeding, representing a 15-fold increase over the nonregulated system.


Assuntos
Técnicas Biossensoriais , Flavanonas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Malonil Coenzima A/metabolismo
2.
BMC Genomics ; 22(1): 688, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551706

RESUMO

BACKGROUND: Eukaryotic organisms, like the model yeast S. cerevisiae, have linear chromosomes that facilitate organization and protection of nuclear DNA. A recent work described a stepwise break/repair method that enabled fusion of the 16 chromosomes of S. cerevisiae into a single large chromosome. Construction of this strain resulted in the removal of 30 of 32 telomeres, over 300 kb of subtelomeric DNA, and 107 subtelomeric ORFs. Despite these changes, characterization of the single chromosome strain uncovered modest phenotypes compared to a reference strain. RESULTS: This study further characterized the single chromosome strain and found that it exhibited a longer lag phase, increased doubling time, and lower final biomass concentration compared with a reference strain when grown on YPD. These phenotypes were amplified when ethanol was added to the medium or used as the sole carbon source. RNAseq analysis showed poor induction of genes involved in diauxic shift, ethanol metabolism, and fatty-acid ß-oxidation during growth on ethanol compared to the reference strain. Enzyme-constrained metabolic modeling identified decreased flux through the enzymes that are encoded by these poorly induced genes as a likely cause of diminished biomass accumulation. The diminished growth on ethanol for the single chromosome strain was rescued by nicotinamide, an inhibitor of sirtuin family deacetylases, which have been shown to silence gene expression in heterochromatic regions. CONCLUSIONS: Our results indicate that sirtuin-mediated silencing in the single chromosome strain interferes with growth on non-fermentable carbon sources. We propose that the removal of subtelomeric DNA that would otherwise be bound by sirtuins leads to silencing at other loci in the single chromosome strain. Further, we hypothesize that the poorly induced genes in the single chromosome strain during ethanol growth could be silenced by sirtuins in wildtype S. cerevisiae during growth on glucose.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Tolerância a Medicamentos , Etanol , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Telômero/genética
3.
PLoS Genet ; 13(3): e1006614, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28301465

RESUMO

Structural Maintenance of Chromosomes (SMC) family proteins participate in multisubunit complexes that govern chromosome structure and dynamics. SMC-containing condensin complexes create chromosome topologies essential for mitosis/meiosis, gene expression, recombination, and repair. Many eukaryotes have two condensin complexes (I and II); C. elegans has three (I, II, and the X-chromosome specialized condensin IDC) and their regulation is poorly understood. Here we identify a novel SMC-like protein, SMCL-1, that binds to C. elegans condensin SMC subunits, and modulates condensin functions. Consistent with a possible role as a negative regulator, loss of SMCL-1 partially rescued the lethal and sterile phenotypes of a hypomorphic condensin mutant, while over-expression of SMCL-1 caused lethality, chromosome mis-segregation, and disruption of condensin IDC localization on X chromosomes. Unlike canonical SMC proteins, SMCL-1 lacks hinge and coil domains, and its ATPase domain lacks conserved amino acids required for ATP hydrolysis, leading to the speculation that it may inhibit condensin ATPase activity. SMCL-1 homologs are apparent only in the subset of Caenorhabditis species in which the condensin I and II subunit SMC-4 duplicated to create the condensin IDC- specific subunit DPY-27, suggesting that SMCL-1 helps this lineage cope with the regulatory challenges imposed by evolution of a third condensin complex. Our findings uncover a new regulator of condensins and highlight how the duplication and divergence of SMC complex components in various lineages has created new proteins with diverse functions in chromosome dynamics.


Assuntos
Adenosina Trifosfatases/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Complexos Multiproteicos/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/classificação , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Meiose/genética , Microscopia Confocal , Mitose/genética , Complexos Multiproteicos/metabolismo , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Filogenia , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Cromossomo X/genética
4.
Mol Cell Proteomics ; 11(8): 501-11, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22474084

RESUMO

Determining the localization, binding partners, and secondary modifications of individual proteins is crucial for understanding protein function. Several tags have been constructed for protein localization or purification under either native or denaturing conditions, but few tags permit all three simultaneously. Here, we describe a multifunctional tandem affinity purification (MAP) method that is both highly efficient and enables protein visualization. The MAP tag utilizes affinity tags inserted into an exposed surface loop of mVenus offering two advantages: (1) mVenus fluorescence can be used for protein localization or FACS-based selection of cell lines; and (2) spatial separation of the affinity tags from the protein results in high recovery and reduced variability between proteins. MAP purification was highly efficient in multiple organisms for all proteins tested. As a test case, MAP combined with liquid chromatography-tandem MS identified known and new candidate binding partners and modifications of the kinase Plk1. Thus the MAP tag is a new powerful tool for determining protein modification, localization, and interactions.


Assuntos
Proteínas de Caenorhabditis elegans/análise , Cromatografia de Afinidade/métodos , Proteínas de Schizosaccharomyces pombe/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos , Immunoblotting , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteômica/métodos , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reprodutibilidade dos Testes , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...